A Bayesian Segmentation Methodology for Parametric Image Models
نویسندگان
چکیده
Region-based image segmentation methods require some criterion for determining when to merge regions. This paper presents a novel approach by introducing a Bayesian probability of homogeneity in a general statistical context. Our approach does not require parameter estimation , and is therefore particularly beneecial for cases in which estimation-based methods are most prone to error: when little information is contained in some of the regions and, therefore, parameter estimates are unreliable. We apply this formulation to three distinct parametric model families that have been used in past segmentation schemes: implicit polynomial surfaces, parametric polynomial surfaces, and Gaussian Markov random elds. We present results on a variety of real range and intensity images.
منابع مشابه
Image Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملLuminance-Chrominance linear prediction models for color textures: An application to satellite image segmentation
This thesis details the conception, development and analysis of a novel color texture descriptor based on the luminance-chrominance complex linear prediction models for perceptual color spaces. In this approach, two dimensional complex multichannel versions of both causal and non-causal models are developed and used to perform the simultaneous parametric power spectrum estimation of the luminan...
متن کاملParametric Image Segmentation of Humans with Structural Shape Priors
The figure-ground segmentation of humans in images captured in natural environments is an outstanding open problem due to the presence of complex backgrounds, articulation, varying body proportions, partial views and viewpoint changes. In this work we propose class-specific segmentation models that leverage parametric max-flow image segmentation and a large dataset of human shapes. Our contribu...
متن کاملTwo--level MRF Models for Image Restoration and Segmentation
We present a new general Bayesian formulation for simultaneously restoring and segmenting piecewise smooth images. This implies estimation of the associated parameters of the classes within an image, the class label for each image pixel and the number of classes. The intensity image is modelled by parametric models based on regularized networks. The method fits the regions (or classes) with com...
متن کاملBayesian inference for multiband image segmentation via model-based cluster trees
We consider the problem of multiband image clustering and segmentation. We propose a new methodology for doing this, called modelbased cluster trees. This is grounded in model-based clustering, which bases inference on finite mixture models estimated by maximum likelihood using the EM algorithm, and automatically chooses the number of clusters by Bayesian model selection, approximated using BIC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 17 شماره
صفحات -
تاریخ انتشار 1995